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Abstract—For arbitrary multilayered shell structures made particularly of composite material
layers a refined finite-rotation theory with seven independent displacement variables is developed,
approximating the displacement field by a cubic series expansion of thickness coordinates. This
model allows a quadratic shear deformation distribution across the thickness. Procedures are given
permitting a unique determination of the first order displacement term in the case of finite rotations.
Kinematic relations are formulated in two alternative forms suitable for both classical and iso-
parametric finite element formulations. The constitutive relations presented model orthotropic
material properties varying arbitrarily across the thickness. This third order single-layer theory is
then transformed, by introducing further constraints, into three simplified models: a third order
theory with five independent displacement variables, a Mindlin-Reissner type theory and a
Kirchhoff-Love type theory. These four models differ, however, from each other essentially in the
constraints imposed on the first and third order displacement variables : a significant advantage for
a unified finite element development. Finally, the Mindlin—Reissner type theory is generalized to
a layer-wise model being the most predictive one in dealing with local interlaminar effects. The
theoretical models are transformed into adequate finite shell elements and then compared by
means of appropriate examples concerning their prediction capability. Also examples are given
demonstrating their applicability to finite-rotation phenomena.

1. INTRODUCTION

Because of a number of beneficial properties composite laminates have been becoming
increasingly important in various branches of modern technology. When composite lami-
nates are used in structural design, an essential objective is mostly to minimize the weight.
Such a purpose evidently requires a special care in developing analysis models for this
structure class. Now, the question is how can the analysis accuracy of the classical analysis
models existing for isotropic shell structures be improved?

An essential decision to be made in developing refined analysis models for composite
laminates concerns primarily the adoption of a kinematic model being more predictive in
the calculation of transverse shear strains than those used in classical shell models (theories
of Kirchhoff-Love and Mindlin—Reissner type). Comparative studies performed by many
authors [e.g. Seide and Chaudhuri (1987), Pandya and Kant (1988), Reddy ez al. (1989),
and Bagar et al. (1992b)] have clearly demonstrated that the classical shell models even of
Mindlin—Reissner type are not able to predict the deformation behaviour with sufficient
accuracy if the side length—thickness ratio or layer stiffness discontinuities exceed certain
limits. Kinematic concepts proposed in the literature [see, e.g. Reddy (1989) and Reddy et
al. (1989)] to improve the analysis accuracy in such situations are essentially of two different
types. The first one consists of the approximation of the displacement field by a higher
order series expansion (mainly a cubic one), leading to the so-called higher order (refined)
single-layer theories. Thereby, single-layer theories are, according to the classification of
Reddy (1989), to be understood as formulations where the displacement field possesses at
least a C'-continuity across the thickness and which therefore cover the above-mentioned
classical shell models as special cases. The second concept being the basis of the so-called
layer-wise theories is characterized by the fact that the given structure is first subdivided into
a suitable number of sub-elements and each of them is then described by a Mindlin—Reissner
type theory, imposing on the displacement field a C°-continuity on all interfaces. This
leads by a selection of N sub-elements to a theoretical model with 2N+ 3 independent
displacements. Models of this type are, of course, the most expensive ones, but provide
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results in every desired order of accuracy by a suitable sub-division. In the following both
the models, the third order single-layer theory and the layer-wise theory, will be referred to
as refined models.

The first shear-deformation model was proposed by Reissner (1945) for the linear plate
analysis. This kinematic model and the Kirchhoff-Love hypothesis have governed during
many decades the shell theory formulations [see, e.g. Bagar and Kritzig (1985)] until
certain inadequacies became apparent in modelling multilayered shell structures. This has
motivated in recent time large research activities with the aim being to achieve more accurate
analysis models for shells. The first third-order plate theories were proposed by Lo ef uf.
(1977) and Reddy (1984). In Reddy’s (1984) model presented for linear analysis, zero shear
strain conditions on plate faces have been used leading to a formulation which
possesses the same number of independent displacements as the Mindlin—Reissner type plate
theory. This kinematic model and similar ones have then received a widespread use in
modelling multilayered structures for different purposes, i.e. bending, stability and dynamic
analysis [see, e.g. Phan and Reddy (1985), Kwon and Akin (1987), Bicos and Springer
(1989), Cederbaum and Librescu (1989), Doxsee (1989), Reddy (1989), Shalev and Aboudi
(1991), and Palazotto and Linnemann (1991)]. In many of the works cited above the
attention is focused « priori on special shell geometries, mainly plates. Nonlinearities in
connection with third-order kinematic models are considered in literature rarely and more-
over by a restricted manner [e.g. Reddy (1989)]. The aspects cited above present strong
limitations for applications in the field of composite laminates and show the necessity to
extend the third-order kinematic model to new applications.

Comparatively refined models of layer-wise type have received less attention in the first
development phase. The various layer-wise theories published in the literature differ from
each other in the inclusion of transverse normal stresses and the degree of nonlinearities
considered. Finite element formulations assuming transverse inextensibility are given by
Owen and Li (1987a,b), Seide and Chaudhuri (1987), Reddy (1989), Reddy ef al. (1989),
and Rammerstorfer (1991). Formulations including transverse normal deformations arc
described by Epstein and Glockner (1977), and Epstein and Huttelmeier (1983). Most of
the works cited above are not able to deal with finite rotations.

For the numerical analysis of composite laminates on the basis of classical kinematic
models we refer to the contributions of Dorninger (1989), Dorninger and Rammerstorfer
(1990), Eschenauer and Fuchs (1987), and Klarmann (1991). Nonlinearities are considered
by Klarmann as finite rotations while, in contrast to recent tendencies in the nonlinear field,
the moderate rotation concept has been adopted in Palmerio er al. (1990a,b) for the
consideration of nonlinearities. For comprehensive reviews of refined models for the analysis
of composite laminates we refer to Reddy (1989) and Noor er al. (1991).

Composite laminates used in modern technology are mostly very flexible structures.
Accordingly, the consideration of nonlinearities with the accompanied instability phenom-
ena is of great relevance for the design. This, in turn, may be achieved in a reliable form if
finite rotations are « priori involved in the analysis. As can clearly be deduced from many
comparative studies [see, e.g. Stein er al. (1982), Nolte (1983), Basar and Ding (1990) and
Ding (1989)] simplified nonlinear models even of moderate rotation type may introduce
significant errors in the analysis and are, moreover, not necessarily much more time-saving
than finite-rotation models. Conclusively one may say that the moderate rotation concept
presents for today’s computational mechanics no advantages [see, e.g. Bagar (1987)]. Finite-
rotation models are the single models permitting a reliable nonlinear structural analysis in
the whole nonlinear range. For the finite-rotation analysis of isotropic shells on the basis
of classical hypotheses there exist already a large number of theoretical models [see, ¢.g.
Pictraszkiewicz (1984, 1989), Stein et al. (1984), Simo and Fox (1989), Basar (1987) and
Bagar and Kritzig (1990) and references presented in these works] which have also been
transformed in recent time into efficient finite elements (Recke and Wunderlich, 1986
Gruttmann er al., 1989 Simo er al., 1990; Biichter, 1992; Buchter and Ramm, 1992:
Sansour and Bufler, 1992; Ding, 1989 Bagar and Ding, 1990; Basar et al., 1992a). But
analysis models applicable to arbitrary multilayered shell structures where higher-order
kinematic models and finite-rotations are considered in combination still seem to be lacking
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in the literature. This has motivated the present contribution; its main objectives can be
summarized as follows : A unified derivation of various shear-deformation models with the
ability to deal with finite-rotations, the transformation of these models into finite shell
elements and a comparative numerical study showing the prediction capability of the
different analysis models, this last aspect being of particular interest to discover where and
why refined analysis models are needed.

The starting point of the derivation of all theoretical models is the refined theory with
a third-order displacement approximation. Since, unlike in some earlier formulations [e.g.
Reddy (1989)], the vanishing of transverse shear strains on laminate faces is not explicitly
required this model involves seven independent displacements. The constraint in question
has been shown to be numerically inconvenient as it involves the second partial derivatives
of the first order displacement term. Concerning the finite element implementation the
distinction between refined models with five and seven independent variables is similar to
that of classical models of Kirchhoff-Love and Mindlin—Reissner type.

The finite element formulation is accomplished using essentially the concepts of earlier
developments (Ding, 1989 ; Basar and Ding, 1990; Basar et al., 1992a) which have been
shown to be numerically efficient. This concerns particularly the consideration of finite-
rotations. Thus, for an a priori satisfaction of the unit length condition a;<a; =1 the
deformed normal vector a; is transformed into Euler rotation angles (Ramm, 1976) which
are then, in contrast to the degeneration approach, directly interpolated in the finite element
implementation.

2. GEOMETRY OF THE UNDEFORMED LAMINATE

In this paper, shell equations are presented in tensor formulation. As usual, Greek
indices represent the numbers 1, 2 and Latin ones the numbers 1, 2, 3. We first consider the
undeformed state of an arbitrary laminate (Fig. 1). Let f = #(6%) be the position vector of
a point P of the undeformed middle surface £ where 6* are arbitrary curvilinear coordinates.
Similar to ¥, all geometrical elements associated with the undeformed state will be denoted
by the suffix(.:.). Thus, variables describing the undeformed middle surface geometry can
be presented as:

base vectors: 4, = t, = X\i,, 1)
metric tensor, determinant: &,; = 8,45, & = |dyl, ()
unit normal vector: h; = 43, 3

4

Fig. 1. Geometry of the undeformed shell continuum.
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Partial derivatives with respect to 6* will be denoted by (...), and covariant derivatives
with respect to the middle surface F by (...)],.

Let 6° be the distance of an arbitrary laminate point 2*, measured in the h;-direction.
Thus, from the position vector of P*

=40, (5)
we find for the base vectors related to P*:

o 3 ° 3e °p @ o 1 N 3 0
a:‘Z rj‘x = r.1+0 a3,1 = ,u;lap- lu; = ();)—6 ba‘(* (6)

-

ay =, =a,. (7)

Herein, the notation (...)* characterizes variables associated with the laminate continuum
P*and &, is the value of 4% for 8° = 0. Using the determinant 4* = |dJ| the volume element
of the undeformed laminate reads as:

dv = /a* do' 4> do°. (8)

Without the suffix (.7.) the above notations will be used to denote the corresponding
geometrical elements of the deformed state. Thus, a, = r, are the base vectors associated
with the deformed position P of P. We, however, note that the base vector a; and the unit
normal vector n, are not identical in this case so that an expression similar to (4) in terms
of the base vector a; does not hold for the curvature tensor b,, of the deformed middle
surface F.

3. DEFORMATION STATE

In the following we shall first deal with the description of the refined single-layer theory
using the middle surface F as the reference surface. In this theory the position vector
r* = r*(0') related to an arbitrary point P* of the deformed laminate is described by the
following cubic series expansion in the thickness coordinate 6° (Fig. 2):

r*(0) = r+0%a; +(0%)u+ (0%, (9)

3

o undeformed state

deformed state

- .
68, =~ (O

—
—
—
——

Fig. 2. Definition of displacement variables.
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with the unknown 2D variablesr, a5, u and y. The notation selected in (9) for the first order
kinematic variable is in accordance with the fact that a; = r%(8° = 0), which is the base
vector related to the middle surface F. We, however, note that a; is not perpendicular to F.
Introducing the expressions (5) and (9) into the well-known definition of Green’s tensor
(Green and Zerna, 1968)

vy = 25— E £

and considering (7) we obtain

3 2
nn k
o Y0 s Y 0
Vi = B Ted ) | e=0 k=0" , (10)
Y« V33 2 ok k 2 sk k
2(9) Va3 2(9) V33
k=0 k=0

where the following 2D strains have been introduced :
0 1 ° °
Vap = E(l',a'l',ﬁ*l',a'l'.ﬁ),
7"aﬁ =3(as, rgtassr,)— (A, Egt+dsg i),
)2’043 =3(as, 235—A;5,°839) + (T ug+rgou,)l,
Pap = 3Ea" Vg 75 ¥a) +(@sa ug+as500,)], (1
0 1
Ya3 = 283°T,,
’)]}ai" = %(33'33‘14’2“'[“),
Fus = 4@ u,+ 20" 25,43y 1,), (12)
3333 = %(33’33— 1),
7"33 = 2u-a,,
)2’33=3a3'y+2u'u. (13)

The notation (.7.) with n = 0, 1, 2, 3 indicates the order of the strains appearing in the series
expansions (10). In view of the approximation (9) being of third order, higher order
6*-terms have been neglected in the derivation of the tangential components 7., (10).
Consequently, the components y,; and y33 have been approximated in (10) by second-order
polynomials since the derivative r¥ used in this case is described also by a polynomial only
of second order.

Up to now, no constraints have been imposed on the unknown variables entering in
the approximation (9). In this sense the above relations are exact within the frame of the
kinematic model adopted. Now we first constrain the out of plane strain y,; to zero and
suppose furthermore the transverse shear deformations y,; to be distributed symmetrically
with respect to the middle surface. The mentioned conditions lead by virtue of (10), (12)
and (13) to

P33 =0=}(as a,—1), —a;-a;, =0, (14)
733=0=2u"a;, js=0=u'r,, —>u=0, (15)

f23 =0 =3a, y+2u-u, —a,y = 0. (16)
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Equations (15) implying the previous one (14) indicate the vanishing of the second-order
variable u which is omitted in the further derivation. This, in turn, is considered in the last
relation (16) which presents—together with the first relation given in (14)-—the constraints
to be satisfied by the unknown variables a, and y. Accordingly, the present theory possesses
seven independent displacement variables and in the following is denoted by the abbrevi-
ation RT7.

4. KINEMATIC RELATIONS

The definitions (11)—(13) will now be transformed into two mechanically equivalent
component relations suitable for isoparametric and classical finite element formulations.
This will enable us to develop finite elements of both types on the basis of a single kinematic
model. As the isoparametric approach requires kinematic relations where deformed and
undeformed states are described by variables of the same type, we note that eqns (11)~(13)
are those being suitable for this formulation.

Classical formulation
To achieve relations suitable for this purpose we introduce the following displacement
variables :

v=r—it=vyp4d', w=a,—a,=wa', y=yd, (7

which are defined with respect to the undeformed basis a'. The partial derivatives of eqns
a7

v.a = (paiﬁi* w,a = l//oziéiv y‘z = éuiﬁi (18)
lead to the definition of the deformation gradients ¢, ¥, and &£, to be used later in

the kinematic relations as abbreviations. The variables in question are related to their
displacement counterparts in a unified manner, e.g.

Pup = Uﬁ'a_[;aﬂ’ss @n3 = Vs, +bio,. (19)

The consideration of eqns (17) and (18) in (11)—(13) leads to the kinematic relations
summarized in Table 1 where J,, is the Kronecker Delta.

For later use, we introduce the rotation vector £ being tangential to the middle

surface F

Q=Q"3, = ——a; xXW, (20)

Table 1. Kinematic relations for non-vanishing two-dimensional strains

Classical formulation Isoparametric formulation
b1 » o = (X el AT
Vap = 1(Pap+ Ppu + @y P’ + Pz ) Yap = 2 X (A 2 A7) Oy

. . ! . ;
Fop = s+ V5= 6204, — Bf 0, Pup == S+ XA,
F Qs 0.+ Ya3@ps T Wpa0.3) —~ X Ay - X5 A4%) by
’;zl? == '5(55‘/1/1,; + 5ﬁ¢1/1 =YW —aalis) Tup = WALAY—ALAY) B,
z = 3 ol N Ny
’;xﬂ = ;(écxﬁ e 0up s’ F 0,80+ @a38ps + Ppalas) Yap = %[X_,,(Xfx},/: + X v

FAX Ly + X y0)
+y* (AL X+ AL X6,
0

Va3 = 5[W;.(5;+(Pxf')+(1+w3)¢13] Vaz = $XLA470,
Tz = a0+ 0.+ ¥30.) Par = HXLX Ly + A XLV S,
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Fig. 3. Rotation vector £2.

where @ denotes the rotation angle illustrated in Fig. 3. For the calculation of w and a; in
terms of the rotation vector £ the following transformations can be used :

. )
w, = suclua) EsY, wy=cosw—1= -2 sm25, w=|Q|= \/QTQ:’
sin
2y = 81+ 902 0 i, 1 (cos - Dk, @y

which have been obtained from (17) and (20). The relations (21) implying the constraint
|a;] = 1 demonstrate that the difference vector w is uniquely determined in every deformed
state if the tangential rotation vector €, is given.

By means of (17), the constraint (14) for the variable a; takes the form

a;ca;— 1 =w;24+w)+w =0 —-wy= -1 /1—wn (22)

where the negative sign in front of the square root has to be taken for the values
n/2 < w < 3n/2. This nonlinear constraint with double roots for w; indicates that the
variable w is, in connection with (22), not able to determine the position of the director a,
by a unique manner in the range @ > n/2. This causes numerical difficulties if w approaches
the value n/2.

To make the present formulation accessible to the finite-rotation analysis it is therefore
necessary to omit an explicit consideration of the nonlinear constraint (22) using, instead
of w,, suitable rotational quantities as primary variables. An efficient procedure for this
purpose is the use of the Rodrigues rotation vector £ already adopted by many authors
(Simo et al., 1990 ; Bagar, 1993 ; Biichter and Ramm, 1992). In this case the transformations
(21) are to be considered to construct the shape functions of the variable w or a; in the
finite element implementation.”Another very effective possibility used in the present case
and the earlier developments (Bagar ef al., 1992a,b) is to fix the deformed unit vector

a, = A’ (23)
with respect to a global Cartesian reference frame i; using the Euler angles (Fig. 4) originally
proposed by Ramm (1976). The constraints to be satisfied in this case by w or a, are,

according to (17) and (23), of the form

w, = (A'—ANX1 6y, wy=AA76,;—1, (24

SAS 30:19-C
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Fig. 4. Definition of rotation variables .

A" =siny,cos,, A7 =siny,siny,, 4% =cosiy,. (25)

In contrast to (22), the constraint {16) for the displacement y, is a linear one and causes
no numerical difficulties. Its component relation is, by means of (17), given by

1
P = o s e “'JV,. 26
o Thw, - (26)
which will be used in the finite element procedure for the elimination of v; at the element
level.

Isoparametric formulation
To obtain suitable component relations, the vectors r and a, are now decomposed with
respect to a fixed orthogonal Cartesian basis i

r= X4, a,= A1, (27

From the numerical point of view it is convenient to use for the vector y the earlier
decomposition (17) with respect to the middle surface basis 4;. Thus, its consideration
together with (27) in the kinematic equations (11)—(13) leads to the component relations
(Table 1) to be used in the following finite element formulation. The constraints to be
considered in the present case are identical with those given in (25) and (26) where w; are
to be replaced by the expressions (24).

5. 2D FORCE VARIABLES AND THE PRINCIPLE OF VIRTUAL WORK

To define 2D force variables being consistent with the strains introduced in (10) we
use the internal virtual work of the laminate continuwm given in terms of the Piola-
Kirchhoff stress tensor of second kind 57 by (Green and Zerna, 1968)

3*4; = »«—j” fis” 5y,/a d6' 462 d6°, = /a*/a. (28)
v

Substituting y,, and 7,5 from (10) and abbreviating the surface element by dF = \/c"z dot dg?
we obtain, in view of the condition y,; = 0, the expression

3
L - j j 5(2 Sengh +2 Y S“aﬁ';;}) dE, (29)
F \n=0

m=0.2
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where the consistent force variables

" h{2
SeH — f ﬁs"ﬂ(03)n d03, n=0,1,23,

—h2

m h{2
s“=f A (0" d6%, m = 0,2, (30)
/2

—h

are similar to the corresponding strains, denoted by (.7.). In view of the well-
known symmetry s = s/, the 2D force variables (30) are symmetric which is indicated
by round brackets. The above force variables are geometrically not interpretable on the
middle surface element and present in this sense pseudo-variables (Basar, 1987).

As external forces we consider surface loads ﬂ;ﬁ p per unit area of the undeformed
middle surface £ and the line loads (ds/d$)n per unit length of the boundary curve € of the
undeformed middle surface. Thus, the principle of virtual work can, considering (29), be
expressed as

. [ (4
5*A=5*Aa+5*Ai=0=Jj (ﬁp)-évdFJrj (*fn)-évdf
7 a e \d§

3 m .
—JL<Z SPH+2 T S°‘35')';;3>dF. 31)

=0 m=0,2

6. CONSTITUTIVE RELATIONS

We consider a laminate consisting of N laminae made of arbitrary orthotropic
material. In each lamina the principal material axes are allowed to be oriented differently
with respect to the curvilinear laminate coordinates 6. Assuming a zero stress condition
522 = 0 across the thickness the constitutive equations valid for this case are given by

n 3 j4n j
S =y Cc*ty,, n=0,1,23,
j=0
m i+m i
Sa3 — Z C* ’Yp35 m= 0, 2, (32)

i=0,2

where

N [h
o= ¥ | acsi 90 de’, k=0,1,2,....6,

L=1Jhe_,

I Nk

Cv=7Y | [ACP®°)do’, 1=0,2,4 (33)
L=1Jhy

and the index L characterizes variables referring to the Lth layer. The relations, which
permit a pointwise determination of the tensorial elastic coefficients C%** and C% in terms
of the given material properties and the ply angle «, are given with a detailed derivation in
Basar (1993). To reduce computational efforts the thickness integration in (33) is performed
in the numerical implementation for each lamina explicitly, approximating the metric tensor
a** of the laminate continuum by that of the reference surface a*’.

7.. SPECIAL CASES

By introducing additional kinematic constraints for the unknown variables entering in
the approximation (9) the above third order theory can easily be transformed into three
simplified models which are to be denoted in the following by the notations given in Table
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Table 2. Notations for the different single-layer theoretical models

RT7 RTS5 TS T3
Internal ) s, - w )
virtual work OFA, = — Y S+ Y S*0%, |dF
FXnzo = 0.2
Independent ‘
. ) s Y/ L .
displacements Ui s 1, N vy, ’
. . 43 il
Existing two- . " Vap = Lap ‘K/w = Oy
dimensional strains Vap (1=10,1.2,3) Y (1=10,1.2,3) ‘
i i
Vap = ﬁx[f Tap = Uy
m h s 0
Ty (m=10.2) '?’z} = - Faz = ;}'x a3 T }377
4
Displacements in o g TN o ‘
kinematic relations i Wi Vi i Wi ¥ Vi W Uy W,
) W= wi(y,)
Constraints wy = wii,) o ,) ’ . o o
for displacements Py = ya0r ) ¥a=valw, v, w, = Wiy, ) w, = wiz,)

Ya = Yol W)

2. Already at this stage we note that the constraint (14) for w preserves its validity in all cases.
Only in the Kirchhoff-Love type theory will it be augmented by two further conditions. The
constraint (16) for y is significant only for the first special case and need not be considered
in the other models where y does not occur. This short discussion clearly shows that all the
models presented in this paper differ from each other mainly by the constraints to be satisfied
by the displacement variables: a significant advantage for the numerical implementation.

Refined theory with five independent displacement variables (RT5)
In this case the shear strains y,; are supposed to vanish on the laminate faces 6* = + h/2.
Using (10) and the relations from Table 1, this may be expressed as

4

2
Vuz = —

A 313 =3[0+ 0.) +y30.5]

1ol

= XX LY+ A XLy, (34)

This equation permits the elimination of the second-order shear strains j‘;“ and by con-
sidering additionally (26) also the third-order displacement vector y, which becomes in the

present case a purely dependent variable. The second-order shear strains *f)ﬂ are now to be
calculated according to the conditions (34) while the kinematic relations of all other strains
can be adopted again from Table 1. The main characteristics of this model and the following
ones are summarized in Table 2. Finally, we note that the present model reduces for the
linear analysis of plates to that proposed by Reddy (1984).

Mindlin—Reissner type theory (T5)

This model supposes a constant distribution of shear strains y,, across the thickness.
This requirement leads by considering (10)-(12) and (15), (16) to the vanishing of the
following variables:

’)%13 = Ov ,?)i/; = O* Vi = 0 (35)

This, in turn, justifies a further simplification )zzaﬂ = 0 (Basar and Kritzig, 1985) so that the
deformation state is governed only by the variables o,z = 30)04,, B = )l)aﬂ and vy, = 239a3, the
kinematic relations of which can be adopted from Table 1. For the isotropic case this model
corresponds exactly to that presented in Bagar (1987).
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Kirchhoff-Love type theory (T3)

This model can be obtained from the previous one by assuming that y°a3 = 0. This
yields by virtue of (12), (17) and (18) the following orthogonality relation:

Fus = 32372, = 0 = 3[(02 + 0, " )W, + @3 (1 +w3)], (36)

forming together with (22) a complete set of equations for the elimination of the dependent
variable w. The numerical procedure to be used for an exact enforcement of the
Kirchhoff-Love hypothesis (22), (36) as well as further useful details of this model are
given for the isotropic case in earlier works (Basar and Ding, 1990 ; Ding, 1989).

8. THE GEOMETRICAL INTERPRETATION OF FORCE VARIABLES

The force variables (30) have been introduced by a variational procedure and are,
consequently, geometrically not interpretable on the middle surface element. To make
the theory accessible for practical applications we shall relate them in the following to
geometrically interpretable ones which are to be introduced directly on the 2D shell element
(Bagar and Krétzig, 1985). For this purpose we consider an element of the deformed
coordinate line 6% = const., of the length ds, = \/aT,ﬁ df” and denote the stress resultant
vector acting on it by n”‘\/; d#? and the corresponding stress couple resultant by m“\/; det.
By the well-known procedure (Basar and Kritzig, 1985) these resultant vectors can be
expressed in terms of the stresses s7, the results being of the form:

%

hi2
" = J s ax d6°,

—h/2
a M 3 12 3
gm“ = is¥0° (as+(07)%y) x a} d6°. 37
—h/2

Expressing the base vectors a¥ according to the kinematic assumption (9) yields in view of
the definitions (30)

a 1] 1 3 0 2
\/; n* = S®ay+ 8§@a, ,+ Sy 4 §93a, 435,

a 1 2 3
-m* = 8Pa;xa,+85a, xa;,4+ 5Py x ay, (38)

=

where all terms connected with force variables being of higher order than the consistent
ones (30) have been neglected. The resultant vectors (37) are now used to define the
following geometrical interpretable force variables :

a o o
\/;ll!x = N“ﬂaﬂ-f-Q“a; = n“ﬁa/g+q“a3,

a
\/5:[“‘z = M“ﬂa3 X aﬂ+M“a3 = maﬁi:; X ﬁ/j +maé3. (39)

The first ones related to the deformed basis (Piola—Kirchhoff force variables of the
second kind) are relevant for the evaluation of the real force distribution in the deformed
shell continuum. The force variables denoted by lower-case letters n*, 4%, ... are the
Lagrangian ones defined with respect to the undeformed basis 4,.

Using (17) and (18), eqns (38) and (39) can easily be transformed to obtain the relations
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Table 3. Different types of force variables and transformations

Variationally defined

force variables SeP(n=10,1,2,3) SE - (m=0.2)

rala_K i1 arie /Ll ~ N 4] .
Piola—Kirchhoff forge variables of Y0 = NPa,+ 0, “m = MPayxa 4+ Ma,
second kind \a a
. . Ja .. a e
Lagrangian force variables \/ 3 n* = 0¥, +q*a,, Wt = Ay <, +mta,
a

Transformations
N b} N | P ] 2
7 = (8] 40, 1)S = (B =, NS £, PS4 WIS 4 35

0 2 o | k]
‘/1 _ (1+w})S‘“’+3y;S'“'+</>,,3S(”"+1///,3S"’”+§,;35‘“"’

i 1 u o \, . VIR
= (Lw) | 0+ — i ST (Lrw ) [ B = Py | S0 '("’ = )
(+wi) oi+o;! T, 9 (I+w)y 5 - [w, Yiy S +.h\(),.+f0/, ) S

: | o L2 . 3
= DS+ 0, )8 (B =, NS + 3 8+ 9, 1) SN,
7 = (80 + ¢, YNV + Q™!

g = (1+w)0*+ @, N¥

‘ il R
m? = (1+w,) (()éj +o@,— Tow <p,.1)M‘“" + W,,é’ﬁﬂﬂla‘
3 -

m = w4+ @ )MPE (1 +w)M”

given in Table 3. These relations permit the calculation of the geometrically interpretable
variables N**, 0*—by solving a linear equation system in the finite element procedure --in
terms of those introduced by a variational procedure (30). The transformation of the
tensorial components N**, 0%, .. . into the physical ones N**’, Q< . presenting variables
per unit length of the deformed coordinate lines 6% = const. can finally be accomplished by
the well-known relations given, e.g. in Basar and Ding (1990).

9. A LAYER-WISE THEORY

In all single-layer theories presented above, the displacement field of the laminate
is described by a single series expansion through the thickness, possessing at least (-
continuity. Consequently, the shear deformations are continuous across the thickness.
Such theoretical models therefore are not able to simulate laminates made of dissimilar
material layers with sufficient accuracy. This particularly concerns the prediction of local
effects such as interlaminar stress distributions and delaminations. To eliminate this defi-
ciency a layer-wise theory can be used.

The basic concepts of this model can be summarized as follows: First, the given
structure is subdivided into N sub-elements across the thickness such that at least one sub-
element per layer is used. Each sub-clement is then described by the Mindlin—Reissner type
theory TS. Finally, a C’-displacement continuity condition is imposed on the laminate
displacement field leading to a theoretical model with 2N+ 3 independent displacement
variables in the case of N sub-elements across the thickness.

We now consider a laminate sub-divided into N sub-elements (Fig. 5). To formulate
the relations referred to the sub-element L we shall use its middle surface

. ]t
& :’2 Z (h./‘+‘h./+r)

J=1

as reference surface £, and the middle surface of the first sub-element (¢° = 0) as reference
surface F, of the whole laminate. This selection is advantageous since the layer-wise theory
becomes identical with the Mindlin—Reissner type theory if the structure is treated by a single
sub-element. The use of the middle surface as reference surface is also suitable to minimize
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Ny

* 3" hp * 3 _h.
rL(EL= - T) =¥ (EL.1 -_La-")
deformed coordinate line 53

Kinematic variables of the
L-th sub-element

Laminate with N sub-elements
across the thickness

x2

Fig. 5. Laminate with N sub-elements across the shell thickness.

errors in constructing the laminate elasticity tensor (33). In each lamina the metric tensor
a¥;, of the lamina continuum will be approximated by that of its reference surface a,g, to
perform the thickness integration explicitly.

The geometrical variables of the sub-element L can be calculated again according to
Section 2. Using the index (...), to characterize the associated variables we find, e.g. from
(6) for the base vectors a¥, of an arbitrary point P¥(— (h,/2) < &} < (h./2))

ﬁ;‘L = EZ‘a = ﬁa(L"i' 6253,a = iD‘o(l +£353.a = (X’vll;,a +€ZA°sz)iu (40)
where ¢* and &] indicate the distance of the point P¥ from the surfaces F, and £,
respectively, measured in 4, = 4, direction. In the following, equations will be presented
as in (40) in isoparametric form. The other geometrical elements of Section 2 can be
specialized similarly on the sub-element L.

Within the frame of the Mindlin—Reissner type theory T35 the position vector r¥ of an
arbitrary point P¥ of the deformed sub-element L is described by the linear approximation

rf=r.+&a;, 41)

with the 2D vectors r, and a;, to be decomposed with respect to the global Cartesian
coordinate system i,:

r, = Xliis az, = AlLi, (42)

In contrast to the single-layer theory T5 the position vector r, introduced in eqn (41) is a
dependent variable. If we require the position vectors r¥ (L = 2,..., N) to satisfy the C*-

continuity condition
h hy
rZ(éZ = - ;) = rtq(éiq =3 ‘) 43)

on all interfaces between two adjacent sub-elements we find for the position vector r,, by
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means of eqn (41), the following expression :

L1

| Lo
rp=r,+3(h Ay +hay) =1+ 5 2 (hsas+hyy23,0). (44)
s

In view of (42) eqn (44) can be rewritten in terms of the components X’ resp. X' and A4}
as:

) ) ) N R ) .
Xp=Xp+3h, AL +hAY) = X +§ z (hy Ay +hy, Ay ). (45)
J

Relation (44) indicates that the position vector r, (L = 2,..., N) depends on the position
vector 1, of the first sub-element and the deformed directors a;, of all foregoing sub-
elements J from 1 to L, so that eqn (45) can be employed for the elimination of X’ at the
element level. It is obvious that the first relation in (45) is computationally more efficient
than the second one in the case of a large number of sub-elements. Consequently it has
been used in the numerical implementation. Also in the present theory, the vector 4
(J=1,..., L) is to be transformed into the independent rotational variables ¥, in order
to satisfy the constraint a4, * a5, = 1 a priori.

The deformation state of the sub-element L is described by the tangential strains a,;, =
ﬁm, BupL = «}aﬂL and the shear strains y,, = 2*}& ;.- The kinematic relations of isoparametric
form summarized in Table 1 can easily be specialized for the sub-element L replacing the
variables X' and A’ by X} and 4}, e.g.

Appr, = %(XiL,aXi./; - X'LaXJL[r) 511/- (46)

Thus, the internal virtual work given in (29) for a single-layer theory can be generalized to
the present case as follows:

N o
4= -3 f J \/Z (S 8,5, + S 87,1 + SEP 88,5, ) A (47
L=1 § 1

where the multiplier \/ &;7&; indicates the surface integration to be performed over the
reference surface F, of the first sub-element.

10. FINITE-ELEMENT FORMULATION

For the application of an incremental-iterative solution strategy the nonlinear equa-
tions presented above are transformed according to a variational procedure [see, e.g. Bagar
and Kritzig (1985) and Basar and Ding (1990)] into incremental equations where all
fundamental state quantities are evaluated by the exact nonlinear relations. The basic
concepts used in the development of shear deformation models can be summarized as
follows : Interpolation polynomials are introduced directly for the rotational variables ¥,,
but not for the director a;. This provides an exact enforcement of the constraint a;*a; = 1
on the whole finite element area. Thus the finite elements developed present, according to
the classification proposed by Biichter (1992), shell theory elements and not degenerated
ones, Constraints existing for all dependent kinematic quantities are considered at the
element level numerically.

Finite element models developed by means of the above theoretical models can be
summarized as follows:

LWT-IAS4: layer-wise theory LWT, 4-node isoparametric assumed strain
element
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Table 4. Isoparametric assumed strain finite-rotation shell elements based on the third-order theory RT7 and the
layer-wise theory LWT

Isoparametric Assumed Strain Finite-Rotation Elements
RT7-IAS4 LWT-IAS4
EZ
A

Theoretical . s
fundamentals Third order theory (RT7) Layer-wise theory (LWT)
Degrees of AX", A""c’ y“ AX‘lv A‘puL’ L= 1- 2’ vosy N
freedom N: number of sub-e¢lements across
the thickness
(7x4) N+3)x4
AXY, Ay, y* AXS, A, L=1,2,.. N

Interpolations for
bilinear polynomials

Integration points 2x2 i 2x2
Interpolations for Vi = Ev8 + 1 - v,
[]
¥, or ¥, Vo= Ev + (1-Ev,
RT7-IAS4: Third order theory RT7, 4-node isoparametric assumed strain
element
T5-1AS4: Mindlin—Reissner type theory TS5, 4-node isoparametric assumed strain
element

T5-M4, M9: Mindlin—Reissner type theory T5, 4-node and 9-node mixed elements

T3-D3, D4: Kirchhoff-Love type theory T3, displacement-based triangular and
quadrilateral elements.

Both refined theoretical models LWT and RT7 are transformed into 4-node isoparametric

elements. To avoid locking the constant shear deformation term ,; is interpolated in RT7-
IAS4 by the assumed strain concept (Dvorkin and Bathe, 1984). Interpolations used for
this purpose are presented in Table 4. It has been shown that higher order shear strains )213,3
occurring in RT7 require no special treatment in this sense. All shear deformation terms
v (L=1,...,N) occurring in the layer-wise theory (47) are interpolated in the same
manner as f}od in the model RT7. In both refined models the independent displacement
variables are interpolated by standard bilinear polynomials. Further characteristics of these
models such as integration points are summarized in Table 4. We finally note that the layer-
wise model LWT-IAS4 degenerates to the Mindlin—Reissner type model if a single sub-
element is used in the analysis.

Mixed models based on the Mindlin—Reissner type theory are described for the iso-
tropic case in Basar ez al. (1992a) while the works by Basar and Ding (1990) and Ding
(1989) contain a detailed presentation of the Kirchhoff-Love type element again for the
isotropic case.

11. NUMERICAL EXAMPLES

Extended numerical studies have been carried out by the finite-element models
described above. First two linear examples will be presented to show the influence of
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different theoretical models on the responses for different conditions concerning the side-
length to thickness ratio a/h or the modular ratio R which characterizes the layer material
dissimilarities. Corresponding parametric studies will permit the discovery of the applic-
ability ranges of different analysis models and the demonstration of the performance of
refined models in dealing with extreme situations.

Linear examples

Example 1 : Sandwich plate under sinusoidal transverse loads (Pandya and Kant, 1988).
The structure (Fig. 6) is simply supported along all edges and consists of three layers placed
symmetrically with respect to the middle surface. The face sheet material is decisively much
stiffer than that of the core. This, however, causes no significant discrepancies between the
results of different analysis models if the structure is sufficiently thin (a/h < 1/100). This
example has been analysed by all finite element models for different values of the thickness
h = 0.01, 0.02, 0.04, 0.10, 0.25. The results obtained for the deflection v; 4., (8'.0° = a/2)
and the stresses s(0',07 = a/2. 0° = h/2, 4h/10), s'*(0' = a/2, 0° =0, 0° = h/2) are
nondimensionalized by the multipliers

1004* h’
m, = - E,(face sheets), m, = —
pa pa

13!

For a precise comparison some characteristic values obtained by using 16 x 16 shear defor-
mation elements or 5x 5 T3-D4 elements per one quarter of the plate are summarized in
Table 5. In Figs 7 and 8 numerical results for the deflection v4(#' = 8* = 4/2) and the
normal stresses s''(0' = 07 = /2. 0" = h;2) are plotted versus the parameter a/h showing
the different accuracy levels of the models used in the analysis. We note that the normal
stresses s'' are, due to the selected lamination scheme, of higher order of magnitude than
the normal stresses s2* and thus for a comparative study more relevant.

From Figs 7 and 8 it can easily be seen that the numerical results obtained by the
refined models RT7 and LWT and those calculated by Pandya and Kant (1988) by a
theoretical model similar to RT7 agree very well within a large range of the investigated
region a/h. Significant discrepancies between the results due to the model RT7 and the
layer-wise model LWT occur for very thick structures (a¢/h < 4). In comparison to RT7,
the applicability ranges of the classical models T5 and T3 are decisively more restricted. If
an error of about 5% is allowed the Mindlin-Reissner type theory can be employed for
a/h = 25 and the Kirchhoff~Love type theory only for a/h = 50 while the refined model is
in this sense applicable up to the value a/h = 10. From the numerical results presented in
Table 5 one may furthermore deduce that the different types of kinematic models influence
the responses for the displacement and shear stresses s'? more than the normal stresses s' .

&4 G=psinisinmd® a=10
q = psinZ&Z-sin 7 h,=h, = 0.1h
h,=08h

Core material:
E, = E; = 0.4%10°

G,; = 0.16x10°
Gy = Gy, = 0.6X10°
v, = 0.25

Face sheet material:
E, = 25%10% E, = 10°

h,=0.1b face sheet G,; = G, = 0.5x10°
Gy = 0.2x10°
h,=0.8h {—- -—4 core viz = 0.25
T T p=10
by=8.1h face sheet
T

Fig. 6. Sandwich plate under sinusoidal transverse loads.
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a
1—g2=2
A}mﬁ*%(@ =@*= 2)
1L

—-x— Kirchhoff-Love type theory (T3)
—o0— Mindlin-Reissner type theory (T5)

=A== Third order theory (RT7)
St ww]= Layer-wise theory (LWT)
. Pandya & Kant (1988)

4+

3_

oL\

1F — 2 o
ol s . _— —
0 4 10 25 50 100 a/h

Fig. 7. Influence of the side-length to thickness ratio a/4 on the displacement.

Example 2 : Sandwich plate under uniform transverse load (Srinivas and Rao, 1970).
The present structure (Fig. 9) is also simply supported and consists of three layers placed
symmetrically with respect to the middle surface. In contrast to the previous example the
side-length to thickness ratio has been appointed, in this case as a constant value a/h = 10
so that the structure belongs obviously to the thick case. To show the influence of the
analysis models on the responses a parameter study has been carried out by varying the
modular ratio R, which represents the ratio of the material properties (E, G) of the face
sheets to those of the core. For nondimensionalizing of the results the following multipliers
are used :

1 C,(Core)
My =—, Ms=——",
q hq

By means of the parameter R layer material discontinuities can be increased arbitrarily.
Now the question is what may happen in such situations?

a
bm, 5101 = 67 = 2)

1.6+
sl oo
1.5 —x— Kirchhoff-Love type theory (T3)
—o~— Mindlin-Reissner type theory (T5)
14k —O=—"Third order theory (RT7)
—-0— Layer-wise theory (LWT)
. Pandya & Kant (1988)
1.3+
1.2+

e B
S ———

Lol /

4 10 25 50 100 a/h

Fig. 8. Influence of the side-length to thickness ratio a/k on the stresses.



Table 5. Sandwich plate under sinusoidal transverse loads——systematic comparison of different theoretical models

Comparison of different theories: a/h = 100.0

s h sl R 4h 4h
Model 1% Usmax myxs'! (2—) m, *s'z(z) my st (1—6) my s”(i(—))
T3 0.8782 1.1060 0.0548 0.8848 0.0438 —0.0433
T5 0.8841 1.0916 0.0543 0.8733 0.0434 —0.0433
RT7 0.8903 1.0931 0.0547 0.8719 0.0437 —0.0435
LWT 0.8917 1.0931 0.0547 0.8713 0.0437 —0.0435
Pandya and
Kant (1988) 0.8910 1.1090 0.0550 0.8847 —0.0437
Pagano (1970) 1.098 0.0550 0.875 —0.0437
Comparison of different theories: a/h = 50.0

) ) ) el el
T3 0.8782 1.1060 0.0548 0.8848 0.0438 —~0.0433
TS 0.9016 1.0874 0.0548 0.8700 0.0439 —0.0435
RT7 0.9288 1.0945 0.0564 0.8652 0.0450 —0.0443
LWT 0.9344 1.0947 0.0566 0.8631 0.0450 ~0.0443

Comparison of different theories: ajh = 25.0

Modet U Oy s HH(;) s *Su(g) "y *Sn<_‘l%> ms *322(%) s HD(S)
T3 0.8782 1.1060 0.0548 0.8848 0.0438 ~(.0433
TS 0.9715 1.0819 0.0576 0.8655 0.0461 —0.0447
RT7 1.0816 1.1003 0.0631 0.8391 0.0499 ~-0.0477
LWT 1.1027 1.1008 0.0641 0.8305 0.0506 -0.0482

879¢

P12 dAvevyg X
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a=10
h, = hy =001, h, = 0.08

Core material:
Cu=E/(1-vyvy)
0.999781
v Ey/ (1= v vy,)
C, = 0231192
Cun=E/(1-v,vy)

= 0.524886
Cy = Gy, = 0.262931
Cu = Gy = 0.266810
Cy = G, = 0.159914

Face sheet material:

Material constants (E, G) are
obtained from those of the core
material by multiplying with
face sheet the modular ratio R.

q=10

Cu

face sheet

core

Fig. 9. Sandwich plate under uniform transverse load.

The numerical results illustrated in Fig. 10 for the deflection v; (6", 6? = a/2) and in
Figs 11-12 for the stresses 52%,(6',6? = a/2, 8> = h/2) show discrepancies becoming increas-
ingly significant as the parameter R increases. This is particularly the case if the results due
to the refined models LWT and RT7 are compared with those due to the classical models
TS5 and T3. The applicability range of different models concerning the prediction of the
displacement v, can be seen more clearly by examining the errors plotted in Fig. 13. We
note that for the calculation of errors the values due to the layer-wise theory have been
considered as reference values. In this context we emphasize the excellent agreement of the
results of the layer-wise model with the 3D analytical solution given by Srinivas and Rao
(1970) for the values R = S, 10, 15. This fact can also be confirmed by examining numerical
results presented in Table 6.

Figure 14 illustrates the distributions of transverse shear stresses s'° across the thickness
for R = 10, computed by different analysis models. The results presented refer to the centre
point of the element near the plate corner. The piecewise constant distribution due to the
layer-wise model has been replaced in Fig. 14 by a piecewise smooth curve passing through
the middle surface values of the sub-elements. It is remarkable that the curve so obtained
vanishes on the laminate faces, passes through the exact values due to Srinivas and Rao
(1970) and, more importantly, contains no discontinuities on interfaces. The aspects men-
tioned clearly demonstrate the excellent predictive capability of the layer-wise theory in

dm, * vy (01 = 62 = %)

280t

?

240¢

— X-=— Kirchhoff-Love type theory (T3)
—o— Mindlin-Reissner type theory (TS)

200+ ~=A- Third order theory (RT7)
ew{]=—- Layer-wise theory (LWT)
° Exact - Srinivas & Rao (1970)

160
120+
80+
40+
%o T 2 50 100 R

Fig. 10. Influence of the modular ratio R on the displacement.
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Fig. 11. Influence of the modular ratio R on the stresses (1).
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Table 6. Influence of the modular ratio R on displacements and stresses

M5 XU 3max
R 5 10 15 25 50 100
8 x8 T3-D4 216.98 118.79 81.78 50.39 25.71 12.99
16 x 16 T5-IAS4 238.81 132.92 92.20 57.24 29.39 14,90
16 x 16 RT7-1AS4 256.35 154.94 115.70 80.90 50.31 30.78
16 x 16 LWT-IAS4 259.05 159.50 121.84 89.66 63.83 49.77
Srinivas and Rao (1970) 258.97 159.38 121.72
My X srL:lx
R 5 10 15 25 50 100
8x8T3-D4 61.24 67.05 69.24 71.10 72.56 73.32
16 x 16 T5-1AS4 59.903 65.387 67.417 69.137 70.470 71.152
16 x 16 RT7-1AS4 60.336 65.480 67.111 68.117 68.400 68.542
16x 16 LWT-IAS4 60.161 65.115 66.556 67.200 66.956 67.859
Srinivas and Rao (1970) 60.353 65.332 66.787
My X Sk,
R 5 10 15 25 50 100
8x8 T3-D4 36.66 40.14 41.45 42,57 43.44 43.89
16 x 16 T5-1AS4 37.320 41.009 42.426 43.629 44.589 45.087
16 x 16 RT7-1AS4 38.426 43.368 45.989 49.351 54.388 59.834
16 x 16 LWT-IAS4 38.450 43.590 46.481 50.518 57.596 67.475
Srinivas and Rao (1970) 38.491 43.566 46.424

through-thickness modelling of shear stresses. This capability is probably due to the con-
sideration of supplementary degrees of freedom in the layer-wise model which provides an
a priori satisfaction of interlaminar equilibrium conditions. On the contrary, distributions
calculated for s'? by single-layer models involve large interlaminar discontinuities. But it is
remarkable that the maximum value computed by the refined model RT7 has an error of
only 8%. Figure 14 demonstrates the LWT model to be the best one in prediction of
transverse shear stresses. A further remarkable result is that all theoretical models have led
for normal stresses s'' to nearly the same results as illustrated in Fig. 15 by a single curve.
As already observed in the previous example the normal stresses 5™ have also been shown
in the present case to be less sensitive to the kinematic models than the displacements and
particularly the shear stresses.

Nonlinear examples

The following nonlinear examples are presented to demonstrate that all the analysis
models proposed are able to deal with nonlinear situations, involving particularly very large
(finite) rotations.

Te"/ hi
& 1.0 mascg - Soreeenas oy
ve] k]

—0— Mindlin-Reissner type theory (T5)
—A= Third order theory (RT7)
—0O— Layer-wise theory (LWT)

o5l .. 427 402] Ja43 & Exact: Srinivas & Rao (1970)

0.1 £ b
. e ¢,

00 20 40 60 80 100 120
1B0l_n 228
shear stress m4+5'°(@1=0,0 =50

Fig. 14. Distribution of transverse shear stresses s'® across the thickness.
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Fig. 15. Distribution of in-plane normal stresses s'' across the thickness.
p

Example 3 : Cylindrical bending of an asymmetric cross-plied laminate under uniformly
distributed transverse load (Reddy, 1989). The consideration of geometrical nonlinear effects
may influence the numerical results very strongly, for certain boundary conditions even at
small load levels. To show this, the structure of Fig. 16 with an asymmetric lamination
scheme has been analysed by the refined model RT7-1AS4 for two different boundary
conditions. Numerical results obtained for the nondimensionalized maximum deflection
lv3max]/f Dy @ 32 x 1 mesh per quarter of the structure are given in Fig. 17 and Table 7
including results due to Reddy (1989) for a systematic comparison. For pinned edges our
results are for both loading cases + ¢ in excellent agreement with those of Reddy (1989).
We note that in this case the deflection v; amounts to only four times the thickness and is
accordingly of an order of magnitude as is allowed within the frame of the Donnell-
Marguerre type theory being the simplest nonlinear formulation. For hinged edges allowing
large displacements significant discrepancies can be observed even at small load levels. This
is certainly due to the fact that in Reddy’s model nonlinearities are—in contrast to the
present one RT7-IAS4-—not considered exactly. Discrepancies occurring in the case of the
hinged edges even for small displacements clearly demonstrate the importance of the finite-
rotation models concerning a reliable consideration of nonlinearities. The shear stress
distribution s'® calculated for the present asymmetric structure by the layer-wise model
LWT-1AS4 (Fig. 18) is again of an excellent predictive capability. The vanishing values at
X? = +h/2, particularly the C’-continuity at the interface X° = 0, demonstrate that the
corresponding equilibrium conditions are satisfied by the layer-wise model very accurately.
The curves plotted in Fig. 18 have been evaluated for the linear case by a 32 x 1 mesh and
refer to the centre point of the finite element near the support. The curve due to the layer-
wise model has been obtained by a procedure similar to that used for the s'*-curve in Fig.

q = 0.05 Ib/in?
XZ@ h/2 (90°) Stacking sequence:
b ¥ R7200) [90°/0°)

Boundary conditions:

on R hinged: v, =v; =0

5D pinned: v, = v, = v, = ()
2 —d

Fig. 16. Asymmetric cross-plied laminate under uniform transverse load.
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Table 7. Asymmetric cross-plied laminate—nonlinear cylindrical bending
Pinned, 53max = USmax/h Hinng, ﬁ}max
-q +q +q
Load Reddy 32x1 Reddy 32x1 Reddy 32x1
q (1989) RT7-1AS4 (1989) RT7-1AS4 (1989) RT7-1AS4
0.005 —0.159 —0.1593 0.475 0.4765 0.429 0.429
0.01 —0.255 —0.2553 0.673 0.6742 0.858 0.858
0.02 —0.386 —0.3855 0.847 0.8481 1.71 1.717
0.03 —0.480 —0.4790 0.954 0.9545 2.55 2.574
0.04 —0.555 —0.5538 1.034 1.0345 3,37 3.430
0.05 —0.618 —0.6169 1.100 1.1001 4.19 4.285
0.10 —0.845 —0.8440 1.327 1.3281 7.92 8.525
0.25 —1.233 —1.2301 1.705 1.7076 16.17 20.57
0.50 —1.609 —1.6046 2.075 2.0767 24.82 37.03
0.75 —1.870 —1.8649 2.332 2.3348 30.87 48.83
1.0 —2.078 —2.0711 2.532 2.5400 35.69 57.14
2.0 —2.665 —2.6543 3.117 3.1240 49.56 73.64
3.0 —3.075 —3.0618 3.525 3.5340 59.65 80.36
4.0 —3.402 ~3.3853 3.850 3.8605 68.00 84.03
5.0 —3.675 —3.6583 4.125 4.1365 75.33 86.41
Load q [Ib/ in? ]
b
0.05 L 7
i
I
0.04} ¢ linear
)
/
0.03} f
/
I/ — +q
002 32«1 RT7-1AS4
! -q
/ -———
0.01} // o  Reddy(1989)
0.0059 1.0 2.0 3.0

SAS 30:19-D

S5.0F

4.0

3.0

2.0

1.0

0.0

Fig. 17. Asymmetric cross-plied laminate—load—displacement diagrams.

Transverse deflection [V;p,|/ b
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= Mindlin-Reissner type theory, 32x1 T3-IAS4
=={Jw=e= Third order theory, 32x1 RT7-1AS4
= [ ayer-wise theory, 32x1 LWT-IAS4

7.38

4.70

h/2 11.42

—>

shear stress % [Ib/ in?]

Fig. 18. Asymmetric cross-plied laminate —transverse shear stress distribution.

13. Tts calculation has been achieved by 16 sub-elements across the thickness. But we note
that the maximum value s.., = 9.49 1b in * calculated by this model with only 4 sub-
elements can be seen as satisfactory and demonstrates the remarkable accuracy of this
model. From Fig. 18 it can also be seen that, concerning a quantitative prediction of ...,
the refined model RT7 does not show the same performance as in the previous symmetrical
structure (Fig. 13). This is caused by the basic assumption of this model, the symmetrical
distribution of transverse shear strains, which evidently does not hold for the present
asymmetric structure. Because of this fact results due to RT7-1AS4 are, in the present case,
not decisively superior to those obtained by the Mindlin—Reissner type model. We finally

emphasise the very good agreement of the numerical results for the normal stresses s™.

Example 4 : Hyperboloidul shell under two puirs of opposite point loads. This example
(Fig. 19) finally has to demonstrate the applicability of the analysis models to arbitrary
shell geometries and very strong nonlinearities. The structure consists of three layers placed
symmetrically with respect to the middle surface. Due to the existing symmetries only one
octant of the structure has been analysed with a 28 x 28 mesh by the models T5-1AS4 and
RT7-1AS4. The analysis has been carried out for two different stacking sequences [07/90" /0~]
and [90°/0°/90°]. The corresponding results illustrated in Fig. 20 for the displacements AX”
of the characteristic points A, B, C and D, particularly 3D-plots of Fig. 21 demonstrate the
considerable influence of the lamination arrangement on the deformation behaviour. Since
the main bending action occurs in the circumferential direction the structure behaves

r(x) = 3V ()7
X*=0 : r=r;=75m
X’=hy: r=ro=150m
h, = h, =h, =h/3
h=004m, h,=200m
E, = 40 X 10° kN/m?
E, = 10° kN/m?
G, =G, =Gy

= 0.6 x 10 kN/m?
vy, = 0.25
P =50kN

1

h {((/\/\I(«\(« hy Stacking sequence: i
Wm h; [0°/90 /0°] and [90°/0 190°]

h3

Fig. 19. Hyperboloidal shell under two pairs of opposite point loads.
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TS-1AS4
RT7-1A84 50r Load factorf

stacking sequence
e {0°/906°/0°} L
e [90°/0°/90°]

28x28

40r

AX, AX)

AXE \axp)

S8T 60 -40 -20
Displacement [m]

50 80

Fig. 20. Hyperboloidal shell—load-displacement diagrams.

decisively more stiffly if the face sheets ([0°/90°/0°]) but not the core ([90°/0°/90°]) are
reinforced in the circumferential direction. The deformed configurations presented in Fig.
21 for the load level f = 32.0 demonstrate, in addition, the very large rotations and
displacements involved in this example. In this context it is interesting to note that the very
large deformations induced at the points 4 and B by the loads are transmitted in the same
order of magnitude up to the boundary curves of the structure: An effect due to the
asymptotical lines involved in the shell of negative Gaussian curvature.

12. CONCLUSIONS

Starting from a seven-parametric third-order theory, five theoretical models of different
accuracy levels have been derived for the finite-rotation analysis of arbitrary multilayered
shell structures. Special care has been taken for the definition of internal forces being
geometrically interpretable on the deformed shell element.

With the exception of the five-parametric third-order theory all other models have been
transformed into adequate finite element models, using in the case of shear-deformation

7
7

53] I

Y oottt

75
3
creetie ity
iy
AR I

stacking sequence stacking sequence
[0°/90°/0°] [90°/0°/90°]

Fig. 21. Hyperboloidal shell—deformed configurations for the load level f = 32.0.
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models the assumed strain concept (Dvorkin and Bathe, 1984) as remedy against shear-
locking. The Mindlin—-Reissner type theory has also been transformed into hybrid-mixed
models described in detail for the isotropic case in Ding (1989) and Basar ef al. (1992a).

By means of extended numerical studies the following conclusions can be made about
the efficiency of the theoretical models developed. The Kirchhoff-Love type theory T3 is
applicable to very thin structures and not predictive in the calculation of shear deformations.
Thus, its application to laminates presents no special advantages. In this sense the Mindlin-
Reissner type theory T5 is much more predictive. It may provide an accurate analysis if
the shell thickness and interlaminar stiffness discontinuities do not exceed certain limits
depending strongly upon the application field. A decision about the applicability of this
model may be made by means of the refined models RT7 and LWT. Concerning the above
cited aspects the third-order theory RT7 possesses a decisively larger range of applicability.
This model is not necessarily superior to the previous one TS in prediction of the qualitative
distribution of transverse shear stresses but in many cases more accurate in calculation of
the corresponding maximum values. The layer-wise theory is the most predictive one and able
to simulate even 3D structures with a remarkable accuracy. Its application is particularly
recommended for those situations where a very accurate through-thickness modelling is
primarily required.

The theoretical model RTS is, concerning the number of independent displacements,
less expensive than the model RT7, but requires in the numerical implementation higher
order interpolations to achieve the same accuracy order. This is due to the second order
derivatives of the displacements v;, which occur because of the constraint (34) in the
kinematic relations associated with the third-order strain «}1,;. Concerning the numerical
implementation the model RTS therefore is comparable with the Kirchhoff-Love type
theory and thus less attractive than RT7.

The finite shell elements RT7-1AS4 and LWT-IAS4 developed by means of the refined
theoretical models are locking-free and applicable to strongly nonlinear situations without
any numerical difficulties. They are also, like the element TS-1AS4, highly insensitive to
element distortions. This is due to the isoparametric concept used in the development. In
one example rectangular elements have been distorted into triangular ones and the errors
induced were less than 3% (Montag, 1992). The numerical efficiency of other finite element
models on the basis of classical theories has been demonstrated in earlier presentations
(Basar and Ding, 1990 : Basar er /., 1991).

Evidently, the finite element models based on the higher-order theory and the layer-
wise theory are more expensive than those based on the Mindlin—Reissner type theory. For
the linear analysis of a semispherical shell under concentrated forces as given in Basar es
al. (1991), the element RT7-TAS4 requires about twice as much as the CPU time needed by
the element T5-1AS4 under the same discretization. The computational efforts required by
the element LWT-IAS4 are dependent on the desired accuracy of the shear stress distribution
and thereby on the number of subdivisions across the thickness.

The above discussion indicates that a single model can hardly be seen as the best onc
for all purposes. In reality, a decision about the quality of an analysis model can be made
under consideration of the requirements of the application field. In this sense we are of the
opinion that the models proposed here would ¢nable us to select the best possible one for
each individual laminate problem.
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